Package: cvms 1.6.2.9000
Ludvig Renbo Olsen
cvms: Cross-Validation for Model Selection
Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134).
Authors:
cvms_1.6.2.9000.tar.gz
cvms_1.6.2.9000.zip(r-4.5)cvms_1.6.2.9000.zip(r-4.4)cvms_1.6.2.9000.zip(r-4.3)
cvms_1.6.2.9000.tgz(r-4.4-any)cvms_1.6.2.9000.tgz(r-4.3-any)
cvms_1.6.2.9000.tar.gz(r-4.5-noble)cvms_1.6.2.9000.tar.gz(r-4.4-noble)
cvms_1.6.2.9000.tgz(r-4.4-emscripten)cvms_1.6.2.9000.tgz(r-4.3-emscripten)
cvms.pdf |cvms.html✨
cvms/json (API)
NEWS
# Install 'cvms' in R: |
install.packages('cvms', repos = c('https://ludvigolsen.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ludvigolsen/cvms/issues
- compatible.formula.terms - Compatible formula terms
- musicians - Musician groups
- participant.scores - Participant scores
- precomputed.formulas - Precomputed formulas
- predicted.musicians - Predicted musician groups
- wines - Wine varieties
Last updated 4 months agofrom:1cba75046f. Checks:OK: 6 ERROR: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | ERROR | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:baselinebaseline_binomialbaseline_gaussianbaseline_multinomialbinomial_metricscombine_predictorsconfusion_matrixcross_validatecross_validate_fnevaluateevaluate_residualsfontgaussian_metricsmodel_functionsmost_challengingmulticlass_probability_tibblemultinomial_metricsplot_confusion_matrixplot_metric_densitypredict_functionspreprocess_functionsprocess_info_binomialprocess_info_gaussianprocess_info_multinomialreconstruct_formulasselect_definitionsselect_metricssimplify_formulasum_tile_settingssummarize_metricsupdate_hyperparametersvalidatevalidate_fn
Dependencies:backportsbayestestRbootcheckmateclasscliclockcodetoolscolorspacecpp11data.tabledatawizarddiagramdigestdplyrfansifarverfuturefuture.applygenericsggplot2globalsgluegowergroupdata2gtablehardhatinsightipredisobandKernSmoothlabelinglatticelavalifecyclelistenvlme4lubridatemagrittrMASSMatrixmgcvminqaMuMInmunsellnlmenloptrnnetnumbersnumDerivparallellyparameterspillarpkgconfigplyrpROCprodlimprogressrpurrrR6RColorBrewerRcppRcppEigenrearrrrecipesrlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
The available metrics in cvms
Rendered fromavailable_metrics.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-06-04
Started: 2020-04-13
Creating a confusion matrix with cvms
Rendered fromCreating_a_confusion_matrix.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-06-04
Started: 2020-04-13
Cross-validating custom model functions with cvms
Rendered fromcross_validating_custom_functions.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-06-04
Started: 2020-04-13
Evaluate by ID/group
Rendered fromevaluate_by_id.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-06-04
Started: 2020-04-13
Multiple-k: Picking the number of folds for cross-validation
Rendered frompicking_the_number_of_folds_for_cross-validation.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-06-04
Started: 2021-06-06